Aspectos genéticos implicados en el asma

Autores/as

  • Jorge Corona-Rivera Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Biología Molecular y Genómica, Instituto de Genética Humana Dr. Enrique Corona-Rivera, Guadalajara, Jalisco
  • Christian Peña-Padilla Hospital Civil de Guadalajara Dr. Juan I. Menchaca, División de Pediatría, Servicio de Genética, Guadalajara, Jalisco
  • Guadalupe Elena Morales-Domínguez Hospital Civil de Guadalajara Dr. Juan I. Menchaca, División de Pediatría, Servicio de Genética, Guadalajara, Jalisco
  • Yaneris Maibeth Romero-Bolaño Hospital Civil de Guadalajara Dr. Juan I. Menchaca, División de Pediatría, Servicio de Genética, Guadalajara, Jalisco

DOI:

https://doi.org/10.29262/ram.v69i1.1031

Palabras clave:

Asma, Genética, Heredabilidad, Regiones candidatas, GWAS, Estudios ómicos

Resumen

El asma es una patología etiológicamente heterogénea resultante de una compleja interacción entre una susceptibilidad genética, factores del huésped y exposiciones ambientales. En el presente trabajo se revisan los aspectos genéticos implicados en el asma, los cuales fueron analizados desde la perspectiva del modelo tradicional de la herencia multifactorial. Fueron incluidos los estudios sobre su agregación familiar, concordancia en gemelos y heredabilidad, así como el conocimiento actual sobre genes candidatos, estudios de asociación amplia del genoma y las recientes contribuciones de la epigenómica y otros estudios ómicos, que en conjunto han aumentado nuestro conocimiento sobre su fisiopatología e interacciones ambientales.

Citas

Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J. 2021:2102730. DOI: 10.1016/j.jaip.2021.10.001

Ober C, Yao T-C. The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev. 2011;242(1):10-30. DOI: 10.1111/j.1600-065X.2011.01029.x.

Kuruvilla ME, Lee FE, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219-233. DOI: 10.1007/s12016-018-8712-1

Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246. DOI: 10.3389/fped.2019.00246

Yang IV, Lozupone CA, Schwartz DA. The environment, epigenome, and asthma. J Allergy Clin Immunol. 2017;140(1):14-23. DOI: 10.1016/j.jaci.2017.05.011

Duarte CW, Vaughan LK, Beasley TM, Tiwari HK. Multifactorial inheritance and complex diseases. En: Rimoin D, Pyeritz R, Korf B (editores). Emery and Rimoin’s principles and practice of medical genetics. 6a. edición. EE. UU.: Academic Press; 2013.

Hill WG, Mackay TFC. Falconer and introduction to quantitative genetics. Genetics. 2004;167(4):1529-1536. DOI: 10.1093/genetics/167.4.1529

Thomsen SF. Genetics of asthma: an introduction for the clinician. Eur Clin Respir J. 2015;2:10.3402/ecrj.v2.24643. DOI: 10.3402/ecrj.v2.24643

Liu T, Valdez R, Yoon PW, Crocker D, Moonesinghe R. The association between family history of asthma and the prevalence of asthma among US adults: National Health and Nutrition Examination Survey, 1999-2004. Genet Med. 2009;11(5):323-328. DOI: 10.1097/GIM.0b013e31819d3015

Burke W, Fesinmeyer M, Reed K, Hampson L, Carlsten C. Family history as a predictor of asthma risk. Am J Prev Med. 2003;24(2):160-169. DOI: 10.1016/s0749-3797(02)00589-5

Sandford A, Weir T, Paré P. The genetics of asthma. Am J Respir Crit Care Med. 1996;153(6 Pt 1):1749-1765. DOI: 10.1164/ajrccm.153.6.8665031

Pin I, Siroux V, Cans C, Kauffmann F, Maccario J, Pison C, et al. Familial resemblance of asthma severity in the EGEA* study. Am J Respir Crit Care Med. 2002;165:185-189. DOI: 10.1164/ajrccm.165.2.2012019

Hakonarson H, March ME, Sleiman PMA. Genetic underpinnings of asthma and related traits. En: Rimoin D, Pyeritz R, Korf B, editores. Emery and Rimoin’s principles and practice of medical genetics. 6a edición. EE. UU.: Academic Press; 2013.

Edfors-Lubs ML. Allergy in 7000 twin pairs. Acta Allergol. 1971;26(4):249-285. DOI: 10.1111/j.1398-9995.1971.tb01300.x

Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis. 1990;142(6 Pt 1):1351-1358. DOI: 10.1164/ajrccm/142.6_Pt_1.1351

Fagnani C, Annesi-Maesano I, Brescianini S, D’Ippolito C, Medda E, Nisticò L, et al. Heritability and shared genetic effects of asthma and hay fever: an Italian study of young twins. Twin Res Hum Genet. 2008;11(2):121-131. DOI: 10.1375/twin.11.2.121

Koeppen-Schomerus G, Stevenson J, Plomin R. Genes and environment in asthma: a study of 4 year old twins. Arch Dis Child. 2001;85(5):398-400. DOI: 10.1136/adc.85.5.398

Laitinen T, Räsänen M, Kaprio J, et al. Importance of genetic factors in adolescent asthma: a population-based twin-family study. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1073-1078. DOI: 10.1164/ajrccm.157.4.9704041

Nieminen MM, Kaprio J, Koskenvuo M. A population-based study of bronchial asthma in adult twin pairs. Chest. 1991;100(1):70-75. DOI: 10.1378/chest.100.1.70

Skadhauge LR, Christensen K, Kyvik KO, Sigsgaard T. Genetic and environmental influence on asthma: a population-based study of 11,688 Danish twin pairs. Eur Respir J. 1999;13:8-14. DOI: 10.1183/09031936.99.13100899

Lubs ML. Emperic risks for genetic counseling in families with allergy. J Pediatr. 1972;80(1):26-31. DOI: 10.1016/s0022-3476(72)80448-7

Harris JR, Magnus P, Samuelsen SO, Tambs K. No evidence for effects of family environment on asthma. A retrospective study of Norwegian twins. Am J Respir Crit Care Med. 1997;156(1):43-49. DOI: 10.1164/ajrccm.156.1.9609094

Tyler SR, Bunyavanich S. Leveraging -omics for asthma endotyping. J Allergy Clin Immunol. 2019;144:13-23. DOI: 10.1016/j.jaci.2019.05.015

Cookson WOC. Asthma genetics. Chest. 2002;121(3):7S-13S. DOI: 10.1378/chest.121.3_suppl.7s-a

Palmer LJ, Burton PR, James AL, Musk AW, Cookson WO. Familial aggregation and heritability of asthma-associated quantitative traits in a population-based sample of nuclear families. Eur J Hum Genet. 2000;8(11):853-860. DOI: 10.1038/sj.ejhg.5200551

Sleimana PMA, Hakonarsona H. Recent advances in the genetics and genomics of asthma and related traits. Current Opin. Pediatr. 2010;22(3):307-312. DOI: 10.1097/MOP.0b013e328339553d

García-Marcos L. Genes, medio ambiente y asma. An Pediatr Monogr. 2004;2(S1):9-29. Disponible en: https://www.analesdepediatria.org/es-genes-medio-ambiente-asma-artículo-13060319

Cookson W, Moffatt M. Making sense of asthma genes. N Engl J Med. 2004;351(17):1794-1796. DOI: 10.1056/NEJMe048232

An J, Do AR, Kang HY, Kim WJ, Lee S, Lee JH, et al. Genome-wide association study of Korean asthmatics: a comparison with UK asthmatics. Allergy Asthma Immunol Res. 2021;13(4):609-622. DOI: 10.4168/aair.2021.13.4.609

Demenais F, Margaritte-Jeannin P, Barnes KC, Cookson WOC, Altmüller J, Ang W, et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat Genet. 2018;50(1):42-53. DOI: 10.1038/s41588-017-0014-7

Abdel-Aziz MI, Neerincx AH, Vijverberg SJ, Kraneveld A, Maitland-van der Zee AH. Omics for the future in asthma. Semin Immunopathol. 2020;42(1):111-126. DOI: 10.1007/s00281-019-00776-x

Hayes B. Overview of statistical methods for genome-wide association studies (GWAS). Methods Mol Biol. 2013;1019:149-169. DOI: 10.1007/978-1-62703-447-0_6

Uitterlinden AG. An introduction to genome-wide association studies: GWAS for dummies. Semin Reprod Med. 2016;34(4):196-204. DOI: 10.1055/s-0036-1585406

Ntontsi P, Photiades A, Zervas E, Xanthou G, Samitas K. Genetics and epigenetics in asthma. Int J Mol Sci. 2021;22(5):2412. DOI: 10.3390/ijms22052412

Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211-1221. DOI: 10.1056/NEJMoa0906312

Bønnelykke K, Sleiman P, Nielsen K, Kreiner-Møller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46(1):51-55. DOI: 10.1038/ng.2830

Johansson Å, Rask-Andersen M, Karlsson T, Ek WE. Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. Hum Mol Genet. 2019;28(23):4022-4041. DOI: 10.1093/hmg/ddz175

Kim KW, Kim DY, Yoon D, Kim K-K, Jang H, Schoettler N, et al. Genome-wide association study identifies TNFSF15 associated with childhood asthma. Allergy. 2022;77(1):218-229. DOI: 10.1111/all.14952.

Akenroye AT, Brunetti T, Romero K, Daya M, Kanchan K, Shankar G, et al. Genome-wide association study of asthma, total IgE, and lung function in a cohort of Peruvian children. J Allergy Clin Immunol. 2021;148(6):1493-1504. DOI: 10.1016/j.jaci.2021.02.035

Valette K, Li Z, Bon-Baret V, Chignon A, Bérubé J-C, Eslami A, et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Commun Biol. 20218;4(1):700. DOI: 10.1038/s42003-021-02227-6

Aneas I, Decker DC, Howard CL, Sobreira DR, Sakabe NJ, Blaine KM, et al. Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat Commun. 2021;12:6115. DOI: 10.1038/s41467-021-26347-z

Li Y, Chen W, Tian S, Xia S, Yang B. Evaluating the causal association between educational attainment and asthma using a mendelian randomization design. Front Genet. 2021;12:716364. DOI: 10.3389/fgene.2021.716364

Kabesch M, Tost J. Recent findings in the genetics and epigenetics of asthma and allergy. Semin Immunopathol. 2020;42(1):43-60. DOI: 10.1007/s00281-019-00777-w

Conrad LA, Cabana MD, Rastogi D. Defining pediatric asthma: phenotypes to endotypes and beyond. Pediatr Res. 2021;90(1):45-51. DOI: 10.1038/s41390-020-01231-6

DeVries A, Vercelli D. Epigenetic mechanisms in asthma. Ann Am Thorac Soc. 2016;13(Suppl 1):S48-S50. DOI: 10.1513/AnnalsATS.201507-420MG

Lee GR, Kim ST, Spilianakis CG, Fields PE, Flavell RA, et al. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity. 2006;24(4):369-379. DOI: 10.1016/j.immuni.2006.03.007

North ML, Jones MJ, MacIsaac JL, Morin AM, Steacy LM, Gregor A, et al. Blood and nasal epigenetics correlate with allergic rhinitis symptom development in the environmental exposure unit. Allergy. 2018;73(1):196-205. DOI: 10.1111/all.13263

Somineni HK, Zhang X, Biagini-Myers JM, Ulm A, Jurcak N, Ryan PH, et al. Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J Allergy Clin Immunol. 2016;137(3):797-805. DOI: 10.1016/j.jaci.2015.10.021

Kobayashi Y, Bossley C, Gupta A, Akashi K, Tsartsali L, Mercado N, et al. Passive smoking impairs histone deacetylase-2 in children with severe asthma. Chest. 2014;145(2):305-312. DOI: 10.1378/chest.13-0835

Gómez JL. Epigenetics in asthma. Curr Allergy Asthma Rep. 2019;19(12):56. DOI: 10.1007/s11882-019-0886-y

Descargas

Publicado

2022-05-28

Cómo citar

Corona-Rivera, J., Peña-Padilla, C., Morales-Domínguez, G. E., & Romero-Bolaño, Y. M. (2022). Aspectos genéticos implicados en el asma. Revista Alergia México, 69(1), 21–30. https://doi.org/10.29262/ram.v69i1.1031

Número

Sección

Artículos de revisión