Fisiopatología de la alergia alimentaria
PubMed (English)

Palabras clave

Alergia alimentaria
Alérgenos alimentarios
Mecanismos inmunológicos

Cómo citar

Reyes-Pavón, D., Jiménez, M., & Salinas, E. (2020). Fisiopatología de la alergia alimentaria. Revista Alergia México, 67(1), 34–53. https://doi.org/10.29262/ram.v67i1.731
Recibido 2020-02-18
Aceptado 2020-03-09
Publicado 2020-01-17

Resumen

La alergia alimentaria es una reacción adversa hacia determinados alimentos, que surge de una respuesta inmune específica, incluyendo reacciones mediadas por inmunoglobulinas (Ig) E, por células o por ambos. Aunque puede desarrollarse en individuos de todas las edades, la población infantil es la más afectada, con una prevalencia de 6 a 8 %. En condiciones de homeostasis, en el organismo existen vías de regulación y de tolerancia que impiden que los componentes de los alimentos originen daño o despierten reacciones inmunológicas adversas. Sin embargo, en condiciones específicas como carga genética predisponente, factores ambientales, patrones dietarios o exposición prematura a ciertos alimentos, no se desarrolla tolerancia y acontecen respuestas inmunológicas excesivas y aberrantes a antígenos alimentarios. La comprensión de los complejos mecanismos fisiopatológicos presentes durante el establecimiento y evolución de la alergia alimentaria permite identificar blancos terapéuticos potenciales y desarrollar terapias más efectivas dirigidas a modificar el curso natural de la alergia y mejorar la calidad de vida de los pacientes. La presente revisión pretende dar una visión actualizada del conocimiento existente sobre la predisposición, vías de sensibilización, manifestaciones y tratamientos de las alergias alimentarias mediadas por IgE, profundizando en los mecanismos moleculares y celulares de su fisiopatología.

https://doi.org/10.29262/ram.v67i1.731
PubMed (English)

Citas

Johansson SGO, O’B Hourihane J, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. Allergy. 2001;56(9):813-824. DOI: 0.1034/j.1398-9995.2001.t01-1-00001.x

Burks WA, Jones SM, Boyce JA, Sicherer SH, Wood RA, Sampson HA, et al. NIAID-sponsored 2010 Guidelines for Managing Food Allergy: applications in the pediatric population. Pediatrics. 2011;128(5):955-965. DOI: 10.1542/peds.2011-0539

Muraro A, Werfel T, Hoffman-Sommergruber K, Roberts G, Beyer K, Cardona V, et al. EAACI Food Allergy and Anaphylaxis Guidelines: diagnosis and management of food allergy. Allergy. 2014;69(8):1008-1025. DOI: 10.1111/all.12429

Fiochi A, Fierro V. Food Allergy. Suiza: World Allergy Organization; 2019. Disponible en: https://www.worldallergy.org/education-and-programs/education/allergic-disease-resource-center/professionals/food-allergy

Branum AM, Lukacs SL. Food allergy among children in the United States. Pediatrics. 2009;124(6):1549-1555. DOI: 10.1542/peds.2009-1210

Schneider-Chafen JJ, Newberry SJ, Riedl MA, Bravata DM, Maglione M, Suttorp J, et al. Diagnosing and managing common food allergies. JAMA. 2010;303(18):1848-1856. DOI: 10.1001/jama.2010.582

Gupta R, Holdford D, Bilaver L, Dyer A, Holl JL, Meltzer D. The economic impact of childhood food allergy in the United States. JAMA Pediatr. 2013;167(11):1026-1031. DOI: 10.1001/jamapediatrics.2013.2376

Matsuo H, Yokooji T, Taogoshi T. Common food allergens and their IgE-binding epitopes. Allergol Int. 2015;64(4):332-343. DOI: 10.1016/j.alit.2015.06.009

Moreno FJ. Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed Pharmacoter. 2007;61(1):50-60. DOI: 10.1016/j.biopha.2006.10.005

Croote D, Quake SR. Food allergen detection by mass spectrometry: the role of systems biology. NPJ Syst Biol Appl. 2016;2:16022. DOI: 10.1038/npjsba.2016.22

Carvajal-Urueña I, Díaz-Vásquez C, Cano-Garcinuño A, García-Merino A, Bernabé M, Pascual-Pérez JM, et al. Perfil de sensibilización alérgica en niños de 0 a 5 años con sibilancias o dermatitis atópica. An Pediatr (Barc). 2010;72(1):30-41. DOI: 10.1016/j.anpedi.2009.09.011

Manea I, Ailenei E, Deleanu D. Overview of food allergy diagnosis. Clujul Med. 2016;89(1):5-10. DOI: 10.15386/cjmed-513

Agodokpessi G, Dossou-Yovo S, Hountohotegbe T, Panou M, Djogbessi D, Bigot C, et al. Évaluation de la sensibilisation à 3 trophallergènes courants chez les enfants suivis pour asthme et ou rhinite allergique en Afrique subsaharienne: étude comparée du prick-test et du dosage des IgEs à Cotonou, Bénin. Rev Fr Allergol. 2018;58(5):361-366. DOI: 10.1016/j.reval.2017.08.009

Hefle SL, Nordlee JA, Taylor SL. Allergenic foods. Crit Rev Food Sci Nutr. 1996;36(Suppl 1):69-89. DOI: 10.1080/10408399609527760

Mari A, Iacovacci P, Afferni C, Barletta B, Tinghino R, Felice GD, et al. Specific IgE to cross-reactive carbohydrate determinants strongly affect the in vitro diagnosis of allergic diseases. J Allergy Clin Immunol. 1999;103(6):1005-1111. DOI: 10.1016/s0091-6749(99)70171-5

Bannon GA. What makes a protein an allergen? Curr Allergy Asthma Rep. 2004;4(1):43-46. DOI: 10.1007/s11882-004-0042-0

Jenkins JA, Breiteneder H, Mills ENC. Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J Allergy Clin Immunol. 2007;120(6):1399-1405. DOI: 10.1016/j.jaci.2007.08.019

Kondo Y, Urisu A. Oral allergy syndrome. Allergol Int. 2009;58(4):485-491. DOI: 10.2332/allergolint.09-RAI-0136

Breiteneder H, Ebner C. Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol. 2000;106(1 Pt 1):27-36. DOI: 10.1067/mai.2000.106929

Werfel T, Asero R, Ballmer-Weber BK, Beyer K, Enrique E, Knulst AC, et al. Position paper of the EAACI: food allergy due to immunological cross-reactions with common inhalant allergens. Allergy. 2015;70(9):1079-1090. DOI: 10.1111/all.12666

Lorenz A-R, Scheurer S, Vieths S. Food allergens: molecular and immunological aspects, allergen databases and cross-reactivity. Chem Immunol Allergy. 2015;101:18-29. DOI: 10.1159/000371647

Schöll I, Jensen-Jarolim E. Allergenic potency of spices: hot, medium hot, or very hot. Int Arch Allergy Immunol. 2004;135(3):247-261. DOI: 10.1159/000081950

Hauser M, Rotulas A, Ferreira F, Matthias E. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010;6(1):1. DOI: 10.1186/1710-1492-6-1

Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X, et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun. 2015;6:6304. DOI:10.1038/ncomms7304

Hong X, Ladd-Acosta C, Hao K, Sherwood B, Ji H, Keet CA, et al. Epigenomewide association study links site-specific DNA methylation changes with cow’s milk allergy. J Allergy Clin Immunol. 2016;138(3):908-911. DOI:10.1016/j.jaci.2016.01.056

Lack G. Update on risk factors for food allergy. J Allergy Clin Immunol. 2012;129(5):1187-1197. DOI: 10.1016/j.jaci.2012.02.036

Smith PK, Masilamani M, Li XM, Sampson HA. The false alarm hypothesis: food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol. 2017;139(2):429-437. DOI: 10.1016/j.jaci.2016.05.040

Yu JE, Mallapaty A, Miller RL. It’s not just the food you eat: environmental factors in the development of food allergies. Environ Res. 2018;165:118-124. DOI: 10.1016/j.envres.2018.03.028

Sampson HA, O’Mahony L, Burks AW, Burks AW, Plaut M, Lack G, et al. Mechanisms of food allergy. J Allergy Clin Immunol. 2018;141(1):11-19. DOI: 10.1016/j.jaci.2017.11.005

Sabra A, Bellanti JA, Rais JM, Castro HJ, Mendez-de Inocencio JM, Sabra S. IgE and non-IgE food allergy. Ann Allergy Asthma Immunol. 2003;90(6 Suppl 3):71-76. DOI: 10.1016/s1081-1206(10)61664-x

Hill DA, Spergel JM. The atopic march: critical evidence and clinical relevance. Ann Allergy Asthma Immunol. 2018;120(2):131-137. DOI: 10.1016/j.anai.2017.10.037

Hill DA, Grundmeier RW, Ram G, Spergel JM. The epidemiologic characteristics of healthcare provider-diagnosed eczema, asthma, allergic rhinitis, and food allergy in children: a retrospective cohort study. BMC Pediatr. 2016;16:133. DOI: 10.1186/s12887-016-0673-z

Savage J, Sicherer S, Wood R. The natural history of food allergy. J Allergy Clin Immunol Pract. 2016;4(2):196-203. DOI: 10.1016/j.jaip.2015.11.024

Sicherer SJ, Wood RA, Stablein D, Lindblad R, Wesley A, Liu AH, et al. Maternal consumption of peanut during pregnancy is associated with peanut sensitization in atopic infants. J Allergy Clin Immunol. 2010;126(6):1191-1197. DOI: 10.1016/j.jaci.2010.08.036

Loibichler C, Pichler J, Gerstmayr M, Bohle B, Kisst H, Urbanek R, et al. Materno-fetal passage of nutritive and inhalant allergens across placentas of term and pre-term deliveries perfused in vitro. Clin Exp Allergy. 2002;32(11):1546-1551. DOI: 10.1046/j.1365-2222.2002.01479.x

Vadas P, Wai Y, Burks W, Perelman B. Detection of peanut allergens in breast milk of lactating women. JAMA. 2001;285(13):1746-1748. DOI: 10.1001/jama.285.13.1746

Metcalfe JR, Marsh JA, D’Vaz N, Geddes DT, Lai CT, Prescott SL, et al. Effects of maternal dietary egg intake during early lactation on human milk ovalbumin concentration: a randomized controlled trial. Clin Exp Allergy. 2016;46(12):1605-1613. DOI: 10.1111/cea.12806

Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259-1260. DOI: 10.1136/bmj.299.6710.1259

Pfefferle PI, Renz H. Microbial exposure and onset of allergic diseases-potential prevention strategies? Allergol Int. 2014;63(1):3-10. DOI: 10.2332/allergolint.13-RAI-0671

Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol. 1997;159(4):1739-1745.

Marrs T, Bruce KD, Logan K, et al. Is there an association between microbial exposure and food allergy? A systematic review. Pediatr Allergy Immunol. 2013;24(4):311-320. DOI: 10.1111/pai.12064

Molloy J, Allen K, Collier F, et al. The potential link between gut microbiota and IgE mediated food allergy in early life. Int J Environ Res Public Health. 2013;10(12):7235-7256. DOI: 10.3390/ijerph10127235

Love BL, Mann JR, Hardin JW, Lu ZK, Cox X, Amrol D. Antibiotic prescription and food allergy in young children. Allergy Asthma Clin Immunol. 2016;12:41. DOI: 10.1186/s13223-016-0148-7

Hirsch AG, Pollak J, Glass TA, Poulsen MN, Bailey-Davis L, Mowery J, et al. Early life antibiotic use and subsequent diagnosis of food allergy and allergic diseases. Clin Exp Allergy. 2017;47(2):236-244. DOI: 10.1111/cea.12807

Gassler N. Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol. 2017;8(4):150-160. DOI: 10.4291/wjgp.v8.i4.150

De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional keys for intestinal barrier modulation. Front Immunol. 2015;6:612. DOI: 10.3389/fimmu.2015.00612

Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799-809. DOI: 10.1038/nri2653

Colegio OR, van Itallie C, Rahner C, Anderson JM. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol Cell Physiol. 2003;284(6):C1346-C1354. DOI: 10.1152/ajpcell.00547.2002

Chirdo FG, Millington OR, Beacock-Sharp H, Mowat AM. Immunomodulatory dendritic cells in intestinal lamina propria. Eur J Immunol. 2005;35(6)1831-1840. DOI: 10.1002/eji.200425882

Pérez-López A, Behnsen J, Nuccio SP, Raffatellu M. Mucosal immunity to pathogenic intestinal bacteria. Nat Rev Immunol. 2016;16(3):135-148. DOI: 10.1038/nri.2015.17

Bain CC, Bravo-Blas A, Scott CL, Gómez-Perdiguero E, Geissmann F, Henri S, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Inmmunol. 2014;15(10):929-937. DOI: 10.1038/ni.2967

Takada Y, Hisamatsu Y, Kamada N, Kitazume MT, Oshima Y, Saito R, et al. Monocyte chemoattractant protein-1 contributes to gut homeostasis and intestinal inflammation by composition of IL-10-producing regulatory macrophage subset. J Immunol. 2010;184(5):2671-2676. DOI: 10.4049/jimmunol.0804012

Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol. 2007;8(10):1086-1094. DOI: 10.1038/ni1511

Hyung KE, Moon BS, Kim B, Kim B, Park ES, Hwang KW. Lactobacillus plantarum isolated from kimchi suppress food allergy by modulating cytokine production and mast cells activation. J Funct Foods. 2017;29:60-68. DOI: 10.1016/j.jff.2016.12.016

Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol. 2013;5(7):a018341. DOI: 10.1101/cshperspect.a018341

Coombes JL, Siddiqui KRR, Arancibia-Cárcamo CV, Hall J, Sun CM, Belkaid Y, et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med. 2007;204(8):1757-1764. DOI: 10.1084/jem.20070590

Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al. Small intestine lamina propia dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med. 2007;204(8):1775-1785. DOI: 10.1084/jem.20070602

Ruiter B, Shreffler WG. The role of dendritic cells in food allergy. J Allergy Clin Immunol. 2012;129(4):921-928. DOI: 10.1016/j.jaci.2012.01.080

Curotto-de Lafaille MA, Kutchukhidze N, Shen S, et al. Adaptive Foxp3þ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity. 2008;29(1):114-126. DOI: 10.1016/j.immuni.2008.05.010

Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-558. DOI: 10.1016/j.immuni.2008.02.017

Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto-de Lafaille MA, Xiong H, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T Reg cells. J Exp Med. 2012;209(10):1723-1742. DOI: 10.1084/jem.20120914

Bandeira A, Mota-Santos T, Itohara S, Degermann S, Heusser C, Tonegawa S, et al. Localization of gamma/delta T cells to the intestinal epithelium is independent of normal microbial colonization. J Exp Med. 1990;172(1):239-244. DOI: 10.1084/jem.172.1.239

Crabbe PA, Bazin H, Eyssen H, Heremans JF. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing Iga in the gut. the germ-free intestinal tract. Int Arch Allergy Appl Immunol. 1968;34(4):362-375. DOI: 10.1159/000230130

Mcdermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142(1):24-31. DOI: 10.1111/imm.12231

Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204-12209. DOI: 10.1073/pnas.0909122107

Cao S, Feehley TJ, Nagler CR. The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Lett. 2014;588(22):4258–4266. DOI: 10.1016/j.febslet.2014.04.026

Boyce JA, Assa’ad A, Burks AW, Jones SM, Sampson HA, Wood RA, et al. Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. Nutr Res. 2011;31(1):61-75. DOI: 10.1016/j.nutres.2011.01.001

Yoo Y, Persanowski MS. Allergic sensitization and the Environment: Latest Update. Curr Allergy Asthma Rep. 2014;14(10):465. DOI: 10.1007/s11882-014-0465-1

Van Ree R, Hummelshøj L, Plantinga M, Poulsen LK, Swindle E. Allergic sensitization: host-immune factors. Clin Transl Allergy. 2014;4(1):12. DOI: 10.1186/2045-7022-4-12

Fox DE, Lack G. Peanut allergy. Lancet. 1998;352(9129):741. DOI: 10.1016/S0140-6736(05)60863-X

Lack G. Epidemiologic risks for food allergy. J Allergy Clin Immunol. 2008;121(6):1331-1336. DOI: 10.1016/j.jaci.2008.04.032

Martin PE, Eckert JK, Koplin JJ, Lowe AJ, Gurrin LC, Dharmage SC, et al. Which infants with eczema are at risk of food allergy? Results from a population-based cohort. Clin Exp Allergy. 2014;45(1):255-264. DOI: 10.1111/cea.12406

Venkataraman D, Soto-Ramírez N, Kurukulaaratchy RJ, Holloway JW, et al. Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J Allergy Clin Immunol. 2014;134(4):876-882. DOI: 10.1016/j.jaci.2014.07.033

Flohr C, Perkin M, Logan K, Marrs T, Radulovic S, Campbell LE, et al. Atopic dermatitis and disease severity are the main risk factors for food sensitization in exclusively breastfed infants. J Invest Dermatol. 2014;134(2):345-350. DOI: 10.1038/jid.2013.298

Thyssen JP, Tang L, Husemoen LL, Stender S, Szecsi PB, Menné T, et al. Filaggrin gene mutations are not associated with food and aeroallergen sensitization without concomitant atopic dermatitis in adults. J Allergy Clin Immunol. 2015;135(5):1375-1378. DOI: 10.1016/j.jaci.2015.01.001

Crespo JF, Rodríguez J, Vives R, James JM, Reaño M, Daroca P, et al. Occupational IgE-mediated allergy after exposure to lupin seed flour. J Allergy Clin Immunol. 2001;108(2):295-297. DOI:10.1067/mai.2001.116860

Leser C, Hartmann AL, Praml G, et al. The “egg-egg” syndrome: occupational respiratory allergy to airborne egg proteins with consecutive ingestive egg allergy in the bakery and confectionery industry. J Investig Allergol Clin Immunol. 2001;11(2):89-93.

Castells MC, Pascual C, Esteban MM, Ojeda JA. Allergy to white potato. J Allergy Clin Immunol. 1986;78(6):1110-1114. DOI: 10.1016/0091-6749(86)90258-7

Vargiu A, Vargiu G, Locci F, del Giacco S, del Giacco GS. Hypersensitivity reactions from inhalation of milk proteins. Allergy. 1994;49(5):386-387. DOI: 10.1111/j.1398-9995.1994.tb02287.x

Fiocchi A, Bouygue GR, Restani P, Gaiaschi A, Terracciano L, Martelli A. Anaphylaxis to rice by inhalation. J Allergy Clin Immunol. 2003;111(1):193-195. DOI: 10.1067/mai.2003.12

Gabriel MF, González-Delgado P, Postigo I, Fernández J, Soriano V, Cueva B. From respiratory sensitization to food allergy: anaphylactiques reaction alter ingestion of mushrooms (Agaricus bisporus). Med Mycol Case Rep. 2015;8:14-16. DOI: 10.1016/j.mmcr.2015.02.003

Shpacovitch V, Feld M, Hollenberg MD, Luger TA, Steinhoff M. Role of protease-activated receptors in inflammatory responses, innate and adaptative immunity. J Leukoc Biol. 2008;83(6):1309-1322. DOI: 10.1189/jlb.0108001

Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Böhm SK, et al. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci. 1997;94(16):8884-8889. DOI: 10.1073/pnas.94.16.8884

Jacob C, Yang PC, Darmoul D, Amadesi S, Saito T, Cottrell GS, et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J Biol Chem. 2005;280(36):31936-31948. DOI: 10.1074/jbc.M506338200

Tordesillas L, Goswami R, Benedé S, Grishina G, Dunkin D, Maleki SJ, et al. Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest. 2014;124(11):4965-4975. DOI: 10.1172/JCI75660

Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G, Yoo S, et al. The major glycoprotein allergen from arachis hypogaea, Ara H 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J Immunol. 2006;177(6):3677-3685. DOI: 10.4049/jimmunol.177.6.3677

Amsem D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell R. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell. 2004;117(4):515-526. DOI: 10.1016/s0092-8674(04)00451-9

Tindemans I, Lukkes M, de Brujin MJW, Li BWS, van Nimwegen M, Amsen D, et al. Notch signaling in T cells is essential for allergic airway inflammation, but expression of Notch ligands Jagged1 and Jagged2 on dendritic cells is dispensable. J Allergy Clin Immunol. 2017;140(4):1079-1089. DOI: 10.1016/j.jaci.2016.11.046

Yamashita M, Ukai-Tadenuma M, Miyamoto T, Sugaya K, Hosokawa H, Hasegawa A, et al. Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem. 2004;279(26):26983-26990. DOI: 10.1074/jbc.M403688200

Kaplan MH, Schindler U, Smiley ST, Grusby MJ. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity. 1996;4(3):313-319. DOI: 10.1016/s1074-7613(00)80439-2

Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, et al. IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol. 2013;131(1):187-200. DOI: 10.1016/j.jaci.2012.08.002

Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T cell biology and immune disease. Immunol Rev. 2009;229(1):173-191. DOI: 10.1111/j.1600-065X.2009.00766.x

Han H, Roan F, Johnston LK, Smith DE, Bryce PJ, Ziegler SF, et al. IL-33 promotes gastrointestinal allergy in a TSLP-independent manner. Mucosal Immunol. 2018;11(2):394-403. DOI: 10.1038/mi.2017.61

Geha RS, Jabara HH, Brodeur SR. The reegulation of immunoglobulin E class-switch recombination. Nat Rev Immunol. 2003;3(9):721-732. DOI: 10.1038/nri1181

Coëffier M, Lorentz A, Manns MP, Bischoff SC. Epsilon germ-line and IL-4 transcripts are expressed in human intestinal mucosa and enhanced in patients with food allergy. Allergy. 2005;60(6):822-827. DOI: 10.1111/j.1398-9995.2005.00782.x

Valdahon M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, et al. Transforming growth factor-β “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 2008;9(12):1341-1346. DOI: 10.1038/ni.1659

Chen CY, Lee JB, Liu B, Ohta S, Wang PY, Mugge L, et al. Induction of Interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity. 2015;43(4):788-802. DOI: 10.1016/j.immuni.2015.08.020

Xie J, Lotoski LC, Chooniedass R, Su RC, Simons ER, Liem J, et al. Elevated antigen-driven IL-9 responses are prominent in peanut allergic humans. PLoS One. 2012;7(10):e45377. DOI: 10.1371/journal.pone.0045377

Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, et al. The biology of IgE and the basis of allergic disease. Annu Rev Immunol. 2003;21:579-628. DOI: 10.1146/annurev.immunol.21.120601.141103

André F, André C, Colin L, et al. IgE in stools as indicator of food sensitization. Allergy. 1995;50(4):328-333. DOI: 10.1111/j.1398-9995.1995.tb01156.x

Belut D, Moneret-Vautrin DA, Nicolas JP, Grilliat GP. IgE levels in intestinal juice. Digest Dis Sci. 1980;25(5):323-332. DOI: 10.1007/bf01308055

Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S73-S80. DOI: 10.1016/j.jaci.2009.11.017

Yu LCH. The epithelial gatekeeper against food allergy. Pediatr Neonatol. 2009;50(6):247-254. DOI: 10.1016/S1875-9572(09)60072-3

Peavy RD, Metcalfe DD. Understanding the mechanisms of anaphylaxis. Curr Opin Allergy Clin Immunol. 2008;8(4):310-315. DOI: 10.1097/ACI.0b013e3283036a90

Ahrens B, Niggemann B, Wahn U, Beyer K. Organ-specific symptoms during oral food challenge in children with food allergy. J Allergy Clin Immunol. 2012;130(2):549-551. DOI: 10.1016/j.jaci.2012.05.045

Rivera J, Fierro NA, Olivera A, Suzuki R. New insights on mast cell activation via the high affinity receptor for IgE. Adv Immunol. 2008;98,85-120. DOI: 10.1016/S0065-2776(08)00403-3

Lorentz A, Baumann A, Vitte J, Blank U. The SNARE machinery in mast cell secretion. Front Immunol. 2012;3:143. DOI: 10.3389/fimmu.2012.00143

Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 2010;10(6):440-452. DOI: 10.1038/nri2782

Karasuyama H, Mukai K, Tsujimura Y, Obata K. Newly discovered roles for basophils: A neglected minority gains new respect. Nat Rev Immunol. 2009;9(1):9-13. DOI: 10.1038/nri2458

Sur R, Cavender D, Malaviya R. Different approaches to study mast cell functions. Int Immunopharmacol. 2007;7(5):555-567. DOI: 10.1016/j.intimp.2007.01.009

Gurish MF, Austen KF. Developmental origin and functional specialization of mast cell subsets. Immunity. 2012;37(1):25-33. DOI: 10.1016/j.immuni.2012.07.003

Johnston LK, Chien KB, Bryce PJ. The immunology of food allergy. J Immunol. 2014;192(6):2529-2534. DOI: 10.4049/jimmunol.1303026

Brandt EB, Strait RT, Hershko D, Wang Q, Muntel EE, Scribner TA, et al. Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest. 2003;112(11):1666-1677. DOI: 10.1172/JCI19785

Valeur J, Lappalainen J, Rita H, Lin AH, Kovanen PT, Berstad A, et al. Food allergy alters jejunal circular muscle contractility and induces local inflammatory cytokine expression in a mouse model. BMC Gastroenterol. 2009;9:33. DOI: 10.1186/1471-230X-9-33

Vaz NM, de Souza CM, Hornbrook MM, Hanson DG, Lynch NR. Sensitivity to intravenous injections of histamine and serotonin in inbred mouse strains. Int Arch Allergy Appl Immunol. 1977;53(6):545-554. DOI: 10.1159/000231796

Boesiger J, Tsai M, Maurer M, Yamaguchi M, Brown LF, Claffey KP, et al. Mast cells can secrete vascular permeability factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcε receptor I expression. J Exp Med. 1998;188(6):1135-1145. DOI: 10.1084/jem.188.6.1135

Ausucua M, Dublin I, Echebarria MA, Aguirre JM. Oral allergy syndrome (OAS). General and stomatological aspects. Med Oral Patol Oral Cir Bucal. 2009;14(11):e568-e572. DOI: 10.4317/medoral.14.e568.

Ogawa Y, Grant JA. Mediators of anaphylaxis. Immunol Allergy Clin North Am. 2007;27(2):249-260. DOI: 10.1016/j.iac.2007.03.013

Sehra S, Yao W, Nguyen ET, Glosson-Byers NL, Akhtar N, Zhou B, et al. Th9 cells are required for tissue mast cell accumulation during allergic inflammation. J Allergy Clin Immunol. 2015;36(2):433-440. DOI: 10.1016/j.jaci.2015.01.021

Forbes EE, Groschwitz K, Abonia JP, Brandet EB, Cohen E, Blanchard C, et al. IL-9– and mast cell–mediated intestinal permeability predisposes to oral antigen hypersensitivity. J Exp Med. 2008;205(4):897-913. DOI: 10.1084/jem.20071046

Kouru T, Takatsu K. IL-5 and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21(12):1303-1309. DOI: 10.1093/intimm/dxp102

Valenta R, Hochwallner H, Linhart B, Pahr S. Food allergies: The basics. Gastroenterology. 2015;148(6):1120-1131. DOI: 10.1053/j.gastro.2015.02.006

Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol. 2017;29(6):247-261 DOI:10.1093/intimm/dxx040

Frieling T, Cooke HJ, Wood JD. Neuroimmune communication in the submucous plexus of guinea pig colon after sensitization to milk antigen. Am J Physiol. 1994;267(6 Pt 1):G1087-G1093. DOI: 10.1152/ajpgi.1994.267.6.G1087

Liu S, Hu HZ, Gao N, Gao C, Wang G, Wang X, et al. Neuroimmune interactions in guinea pig stomach and small intestine. Am J Physiol Gastrointest Liver Physol. 2013;284(1):G154-G164. DOI: 10.1152/ajpgi.00241.2002

van Geldre LA, Lefebvre RA. Interaction of NO and VIP in gastrointestinal smooth muscle relaxation. Curr Pharm Des. 2004;10(20):2483-2497. DOI: 10.2174/1381612043383890

Xu YS, Waserman SB, Waserman S, Connors L, Stawiarski K, Kastner M. Food allergy management from the perspective of patients or caregivers, and allergists: a qualitative study. Allergy, Asthma Clin Immunol. 2010;6(1):30. DOI: 10.1186/1710-1492-6-30

Sampson HA, Aceves S, Bock A, James J, Jones S, Lang D, et al. Food allergy: a practice parameter update-2014. J Allergy Clin Immunol. 2014;134(5):1016-1025. DOI: 10.1016/j.jaci.2014.05.013

Richard S, Tang M. Pharmacological management of acute food-allergic reactions. Chem Immunol Allergy. 2015;101:96-105. DOI: 10.1159/000374080

Sampson HA, Muñoz-Furlong A, Campbell RL, Franklin-Adkinson N, Bock A, Branum A, et al. Second symposium on the definition and management of anaphylaxis: summary report: Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network Symposium. J Allergy Clin Immunol. 2006;117(2):391-397. DOI: 10.1016/j.jaci.2005.12.1303

Randall KL, Hawkins CA. Antihistamines and allergy. Aust Prescr. 2018;41(2):41-45. DOI: 10.18773/austprescr.2018.013

Barnes PJ. Molecular mechanisms of corticosteroids in allergic diseases. Allergy. 2001;56(10):928-936. DOI: 10.1034/j.1398-9995.2001.00001.x

Sicherer SH, Simons FE, Section on Allergy and Immunology, Academy of Pediatrics. Self-injectable epinephrine for first-aid management of anaphylaxis. Pediatrics. 2007;119(3):638-646. DOI: 10.1542/peds.2006-3689

Lieberman P, Nicklas RA, Randolph C, Oppenheimer J, Bernstein D, Ellis A, et al. Anaphylaxis: a practice parameter update 2015. Ann Allergy Asthma Immunol. 2015;115(5):341-384. DOI: 10.1016/j.anai.2015.07.019

Noon L, Cantab BC. Prophylactic inoculation against hay fever. Lancet. 1911;177(4580):1572-1573. DOI: 10.1016/S0140-6736(00)78276-6

Licari A, Manti S, Marseglia A, Brambilla I, Votto M, Castagnoli R, et al. Food Allergies: Current and future treatments. Medicina (Kaunas). 2019;55(5):120. DOI: 10.3390/medicina55050120

MacGlashan DW Jr, Bochner BS, Adelman DC, Jardieu PM, Togias A, Hamilton RG, et al. Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol. 1997;158(3):1438-1445.

Sampson HA, Leung DYM, Burks AW, Lack G, Bahna SL, Jones SM, et al. A phase II, randomized, doubleblind, parallelgroup, placebocontrolled oral food challenge trial of Xolair (omalizumab) in peanut allergy. J Allergy Clin Immunol. 2011;127(5):1309-1310. DOI: 10.1016/j.jaci.2011.01.051

Savage JH, Courneya JP, Sterba PM, Macglashan DW, Saini SS, Wood RA. Kinetics of mast cell, basophil, and oral food challenge responses in omalizumab-treated adults with peanut allergy. J Allergy Clin Immunol. 2012;130(5):1123-1129. DOI: 10.1016/j.jaci.2012.05.039

Nadeau KC, Schneider LC, Hoyte L, Borras I, Umetsu DT. Rapid oral desensitization in combination with omalizumab therapy in patients with cow’s milk allergy. J Allergy Clin Immunol. 2011;127(6):1622-1624. DOI: 10.1016/j.jaci.2011.04.009

Castelazzi AM, Valsecchi C, Caimmi S, Licari A, Marseglia A, Caimmi D, et al. Probiotics and food allergy. Ital J Pediatr. 2013;39:47. DOI: 10.1186/1824-7288-39-47

Yang B, Xiao L, Liu S, Liu X, Luo Y, Ji Q, et al. Exploration of the effect of probiotics supplementation on intestinal microbiota of food allergic mice. Am J Transl Res. 2017;9(2):376-385.

Zuercher AW, Weiss M, Holvoet S, Moser M, Moussu H, Horiot S, et al. Lactococcus lactis NCC 2287 alleviates food allergic manifestations in sensitized mice by reducing IL-13 expression specifically in the ileum. Clin Dev Immunol. 2012;2012:485750. DOI: 10.1155/2012/485750

Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, et al. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J Allergy Clin Immunol. 2015;135(3):737-744. DOI: 10.1016/j.jaci.2014.11.034

Maes T, Joos GF, Brusselle GG. Targeting interleukin-4 in asthma: lost in translation? Am J Respir Cell Mol Biol. 2012;47(3):261-270. DOI: 10.1165/rcmb.2012-0080TR

Placebo-controlled study to investigate ANB020 activity in adult patients with peanut allergy. ControlTrials.gov [sitio web]. 2018. Disponible en: https://clinicaltrials.gov/ct2/show/NCT02920021

Bauer RN, Manohar M, Singh AM, Jay DC, Nadeau KC. The future of biologics: applications for food allergy. J Allergy Clin Immunol. 2015;135(2):312-323. DOI: 10.1016/j.jaci.2014.12.1908

Su Y, Romeu-Bonilla E, Anagnostou A, Fitz-Patrick D, Hearl W, Heiland T. Safety and long-term immunological effects of CryJ2-LAMP plasmid vaccine in Japanese red cedar atopic subjects: a phase I study. Hum Vaccim Immunother. 2017;13(12):2804-2813. DOI: 10.1080/21645515.2017.1329070

Sampath V, Sindher SB, Zhan W, Nadeau KC. New treatment directions in food allergy. Ann Allergy Asthma Immunol. 2018;120(3):254-262. DOI: 10.1016/j.anai.2018.01.004

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2020 Revista Alergia México

Métricas

Cargando métricas ...