Psicosis autoinmune
PDF
PubMed (Inglés)

Palabras clave

Psicosis autoinmune
Síntomas neurológicos
Encefalitis autoinmune

Cómo citar

Psicosis autoinmune. (2021). Revista Alergia México, 68(4). https://doi.org/10.29262/ram.v68i4.981

Plaudit

Resumen

Con el advenimiento de la descripción de las encefalitis autoinmunes por diferentes anticuerpos neuronales de superficie (anti-NMDAr, entre otros) y que la psicosis puede ser la única manifestación sin síntomas neurológicos (epilepsia, alteraciones del movimiento, disautonomías, alteración del despierto) en 6.5 % de los pacientes, el término psicosis autoinmune ha retomado gran interés entre los investigadores. En 2020 se creó un consenso internacional para la descripción del término "psicosis autoinmune" y su abordaje diagnóstico. A través de este consenso, considerando diferentes criterios, se propone la definición de psicosis autoinmune en diferentes grados de certeza (posible, probable y definida). La finalidad de estos criterios es sustentar el origen autoinmune en pacientes que presenta psicosis con características atípicas, justificando así la realización de estudios de laboratorio y gabinete complementarios (punción lumbar, electroencefalograma, imagen de resonancia magnética de encéfalo); además, estos criterios se aplican a pacientes con psicosis sin síntomas neurológicos que no cumplen completamente con los criterios de encefalitis autoinmune. El inicio temprano de la inmunoterapia impacta directamente en el pronóstico funcional de los pacientes; se debe considerar el inicio temprano de tratamiento en cuadros clínicos de psicosis autoinmune probable o definida.

PDF
PubMed (Inglés)

Referencias

Pape K, Tamouza R, Leboyer M, Zipp F. Immunoneuropsychiatry - novel perspectives on brain disorders. Nat Rev Neurol. 2019;15(6):317-328. DOI: 10.1038/s41582-019-0174-4

Al-Diwani AAJ, Pollak TA, Irani SR, Lennox BR. Psychosis: an autoimmune disease? Immunology. 2017;152(3):388-401. DOI: 10.1111/imm.12795.

Ellul P, Groc L, Tamouza R, Leboyer M. The clinical challenge of autoimmune psychosis: learning from Anti-NMDA receptor autoantibodies. Front Psychiatry. 2017;8:1-6. DOI: 10.3389/fpsyt.2017.00054

Pollak TA, Lennox B, Vincent A, Müller S, Benros ME, Prüss H, et al. An international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin: the concept of autoimmune psychosis. Lancet Psychiatry. 2019;30290-30291.

Maat P, de Graaff E, van Beveren NM, Hulsenboom E, Verdijk RM, Koorengevel K, et al. Psychiatric phenomena as initial manifestation of encephalitis by anti-NMDAR antibodies. Acta Neuropsychiatr. 2013;25(3):128-136. DOI: 10.1111/acn.12013

Maneta E, García G. Psychiatric manifestations of anti-NMDA receptor encephalitis : neurobiological underpinnings and differential diagnostic implications. Psychosomatics. 2014;55(1):1-8. DOI: 10.1016/j.psym.2013.06.002

Herken J, Prüss H. Red flags: Clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry. 2017;8:25. DOI: 10.3389/fpsyt.2017.00025

Zandi MS, Irani SR, Lang B, Waters P, Jones PB, McKenna P, et al. Disease-relevant autoantibodies in first episode schizophrenia. J Neurol. 2011;258(4):686-688. DOI: 10.1007/s00415-010-5788-9

Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12(2):157-165. DOI: 10.1016/S1474-4422(12)70310-1

Diagnostic and Statistical Manual of Mental Disorders (DSM–5). EE. UU.: American Psychiatric Association; 2013.

Ramírez-Bermúdez J, Sosa-Ortiz A. Principios de neuropsiquiatría. Abordaje de los síndromes neuropsiquiátricos. México: Asociación Psiquiátrica Mexicana; 2018.

How OS. Psychotic disorders. A Prim Child Adolesc Psychiatry. 2008;193-214.

Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, et al. Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol. 2019;39(1):31-59. DOI: 10.1007/s10571-018-0632-3

Kapur S. Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry. 2003;160(1):13-23. DOI: 10.1176/appi.ajp.160.1.13

Ramírez-Bermúdez J, Ruiz-Chow A, Pérez-Neri I, Soto-Hernández JL, Flores-Hernández R, Nente F, et al. Cerebrospinal fluid homovanillic acid is correlated to psychotic features in neurological patients with delirium. Gen Hosp Psychiatry. 2008;30(4):337-343. DOI: 10.1016/j.genhosppsych.2008.01.007

Ramírez-Bermúdez J, Pérez-Neri I, Montes S, Nente F, Ramírez-Abascal M, Carrillo-Mezo R, et al. Dopaminergic hyperactivity in neurological patients with delirium. Arch Med Res. 2019;50(8):477-483. DOI: 10.1016/j.arcmed.2019.11.002

McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19(1):15-33. DOI: 10.1002/wps.20693

Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: Dopamine, serotonin, and glutamate. CNS Spectr. 2018;23(3):187-191. DOI: 10.1017/S1092852918001013

Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: A systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev. 2014;45:233-245. DOI: 10.1016/j.neubiorev.2014.06.005

Brown AS, Schaefer CA, Quesenberry CP, Liu L, Babulas VP, Susser ES. Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry. 2005;162(4):767–773. DOI: 10.1176/appi.ajp.d162.4.767

Takei N, Van Os J, Murray RM. Maternal exposure to influenza and risk of schizophrenia: a 22 year study from The Netherlands. J Psychiatr Res. 1995;29(6):435-445. DOI: 10.1016/0022-3956(95)00031-3

Pedersen MS, Benros ME, Agerbo E, Børglum AD, Mortensen PB. Schizophrenia in patients with atopic disorders with particular emphasis on asthma: a Danish population-based study. Schizophr Res. 2012;138(1):58-62. DOI: 10.1016/j.schres.2012.02.019

Benros ME, Eaton WW, Mortensen PB. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry. 2014;75(4):300-306. DOI: 10.1016/j.biopsych.2013.09.023

Benros ME, Nielsen PR, Nordentoft M, Eaton WW, Dalton SO, Mortensen PB. Autoimmune diseases and severe infections as risk factors for schizophrenia: A 30-year population-based register study. Am J Psychiatry. 2011;168(12):1303-1310. DOI: 10.1176/appi.ajp.2011.11030516

Mané-Damas M, Hoffmann C, Zong S, Tan A, Molenaar PC, et al. Autoimmunity in psychotic disorders. Where we stand, challenges and opportunities. Autoimmun Rev. 2019;18(9):102348. DOI: 10.1016/j.autrev.2019.102348

Vitaliani R, Mason W, Ances B, Zwerdling T, Jiang Z, Dalmau J. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol. 2005;58(4):594-604. DOI: 10.1002/ana.20614

Dalmau J, Tüzün E, Wu H, Masjuan J, Rossi JE, Voloschin A, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25-36. DOI: 10.1002/ana.21050

Pollak TA, Lennox BR, Müller S, Benros ME, Prüss H, van Elst LT, et al. Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. Lancet Psychiatry. 2020;7(1):93-108. DOI: 10.1016/S2215-0366(19)30290-1

Kirkbride JB, Errazuriz A, Croudace TJ, Morgan C, Jackson D, Boydell J, et al. Incidence of schizophrenia and other psychoses in England, 1950-2009: a systematic review and meta-analyses. PLoS One. 2012;7(3):e31660. DOI: 10.1371/journal.pone.0031660

Jongsma HE, Turner C, Kirkbride JB, Jones PB. International incidence of psychotic disorders, 2002-17: a systematic review and meta-analysis. Lancet Public Health. 2019;4(5):e229-e244. DOI: 10.1016/S2468-2667(19)30056-8

Cooper GS, Bynum ML, Somers EC. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun. 2009;33(3-4):197-207. DOI: 10.1016/j.jaut.2009.09.008

Cullen AE, Holmes S, Pollak TA, Blackman G, Joyce DW, Kempton MJ, et al. Associations between non-neurological autoimmune disorders and psychosis: a meta-analysis. Biol Psychiatry. 2019;85(1):35-48. DOI: 10.1016/j.biopsych.2018.06.016

Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol. 2014;10(10):579-596. DOI: 10.1038/nrneurol.2014.148

Fragoso-Loyo H, Cabiedes J, Orozco-Narváez A, Dávila-Maldonado L, Atisha-Fregoso Y, Diamond B, et al. Serum and cerebrospinal fluid autoantibodies in patients with neuropsychiatric lupus erythematosus. Implications for diagnosis and pathogenesis. PLoS One. 2008;3(10):e3347. DOI: 10.1371/journal.pone.0003347

Zhou JY, Xu B, Lopes J, et al. Hashimoto encephalopathy: literature review. Acta Neurol Scand. 2017;135(3):285-290. DOI: 10.1111/ane.12618

Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis. 2012;54(7):899-904. DOI: 10.1093/cid/cir1038

Zhang L, Wu M-Q, Hao ZL, Vance-Chiang SM, Shuang K, Lin M-T, et al. Clinical characteristics, treatments, and outcomes of patients with anti-N-methyl-D-aspartate receptor encephalitis: a systematic review of reported cases. Epilepsy Behav. 2017;68:57-65. DOI: 10.1016/j.yebeh.2016.12.019

Steiner J, Walter M, Glanz W, Sarnyai Z, Bernstein H-G, Vielhaber S, et al. Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: Specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis. JAMA Psychiatry. 2013;70(3):271-278. DOI: 10.1001/2013.jamapsychiatry.86

van Sonderen A, Schreurs MW, Wirtz PW, Sillevis-Smitt PAE, Titulaer MJ. From VGKC to LGI1 and Caspr2 encephalitis: the evolution of a disease entity over time. Autoimmun Rev. 2016;15(10):970-974. DOI: 10.1016/j.autrev.2016.07.018

Oviedo-Salcedo T, de Witte L, Kümpfel T, Kahn RS, Falkai P, Eichhorn P, et al. Absence of cerebrospinal fluid antineuronal antibodies in schizophrenia spectrum disorders. Br J Psychiatry. 2018;212(5):318-320. DOI: 10.1192/bjp.2018.24

Dalmau J, Armangué T, Planagumà J, Radosevic M, Mannara F, Leypoldt F, et al. An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol. 2019;18(11):1045-1057. DOI: 10.1016/S1474-4422(19)30244-3

van Sonderen A, Thijs RD, Coenders EC, Jiskoot LC, Sánchez E, de Brujin MAAM, et al. Anti-LGI1 encephalitis: Clinical syndrome and long-term follow-up. Neurology. 2016;87(14):1449-1456. DOI: 10.1212/WNL.0000000000003173

Vogrig A, Muñiz-Castillo M, Desestret V,Joubert B, Honnorat J. Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections,and checkpoint inhibitors. Ther Adv Neurol Disord. 2020;13:1756286420932797. DOI: 10.1177/1756286420932797

Patterson KR, Dalmau J, Lancaster E. Mechanisms of Caspr2 antibodies in autoimmune encephalitis and neuromyotonia. Ann Neurol. 2018;83(1):40-51. DOI: 10.1002/ana.25120

Jia Y, Li M, Wang H, Zhang M, Wang Y. The peculiar clinical symptoms and treatment of limbic encephalitis associated with AMPA receptor antibody. Eur Neurol. 2021;84(3):206-211. DOI: 10.1159/000515592

Höftberger R, van Sonderen A, Leypoldt F,Houghton D, Geschwind M, Gelfand J, et al. Encephalitis and AMPA receptor antibodies. Neurology. 2015;84(24)2403-2412. DOI: 10.1212/WNL.0000000000001682

Guo CY, Gelfand JM, Geschwind MD. Anti-gamma-aminobutyric acid receptor type A encephalitis: a review. Curr Opin Neurol. 2020;33(3):372-380. DOI: 10.1097/WCO.0000000000000814

Zhu F, Shan W, Lv R, Li Z, Wang Q. Clinical characteristics of anti-GABA-B receptor encephalitis. Front Neurol. 2020;11:403. DOI: 10.3389/fneur.2020.00403

Dubey D, Lennon VA, Gadoth A, Pittock SJ, Flanagan EP, Schmeling JE, et al. Autoimmune CRMP5 neuropathy phenotype and outcome defined from 105 cases. Neurology. 2018;90(2):e103-e110. DOI: 10.1212/WNL.0000000000004803

Crespo-Burillo JA, Hernando-Quintana N, Ruiz-Palomino P, et al. Chorea secondary to striatal encephalitis due to anti-CV2/CRMP5 antibodies. Case description and review of the literature. Neurologia. 2015;30(7):451-453. DOI: 10.1016/j.nrleng.2013.10.025

Balint B, Vincent A, Meinck HM, Irani SR, Bathia KP. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology. Brain. 2018;141(1):13-36. DOI: 10.1093/brain/awx189

Dalmau J, Geis C, Graus F. Autoantibodies to synaptic receptors and neuronal cell surface proteins in autoimmune diseases of the central nervous system. Physiol Rev. 2017;97(2):839-887. DOI: 10.1152/physrev.00010.2016

Dai X, Kuang L, Feng L, Yi X, Tang W, Liao Q, et al. Anti-dopamine receptor 2 antibody-positive encephalitis in adolescent. Front Neurol. 2020;11:471. DOI: 10.3389/fneur.2020.00471

Hara M, Ariño H, Petit-Pedrol M, Sabater L, Titulaer MJ, Martínez-Hernández E, et al. DPPX antibody-associated encephalitis. Neurology. 2017;88(14):1340-1348. DOI: 10.1212/WNL.0000000000003796

Spatola M, Sabater L, Planagumà J, Martínez-Hernández E, Armangué T, Prüss H, et al. Encephalitis with mGluR5 antibodies: Symptoms and antibody effects. Neurology. 2018;90(22):e1964-e1972. DOI: 10.1212/WNL.0000000000005614

Gaig C, Graus F, Compta Y, Högl B, Bataller L, Brüggemann N, et al. Clinical manifestations of the anti-IgLON5 disease. Neurology. 2017;88(18):1736-1743. DOI: 10.1212/WNL.0000000000003887

Najjar S, Steiner J, Najjar A, Bechter K. A clinical approach to new-onset psychosis associated with immune dysregulation: the concept of autoimmune psychosis. J Neuroinflammation. 2018;15(1):40. DOI: 10.1186/s12974-018-1067-y

Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391-404. DOI: 10.1016/S1474-4422(15)00401-9

Jeannin-Mayer S, André-Obadia N, Rosenberg S, Boutet C, Honnorat J, Antoine JC, et al. EEG analysis in anti-NMDA receptor encephalitis: description of typical patterns. Clin Neurophysiol. 2019;130(2):289–296. DOI: 10.1016/j.clinph.2018.10.017

Bayliss L, Restrepo-Martínez M, Duarte A, Borja C, Espinola-Nadurille M. Are we missing subtle forms of anti-N-Methyl-D-Aspartate encephalitis with the current diagnostic approach? A case report. J Psychiatr Pract. 2019;25(5):383-390. DOI: 10.1097/PRA.0000000000000412

Probasco JC, Solnes L, Nalluri A, Cohen J, Jones KM, Zan E, et al. Decreased occipital lobe metabolism by FDG-PET/CT. Neurol Neuroimmunol NeuroInflammation. 2017;5(1):1–9. DOI: 10.1212/NXI.0000000000000413

Kerik-Rotenberg N, Diaz-Meneses I, Hernández-Ramírez R, Muñoz-Casillas R, Reynoso-Mejía CA, Flores-Rivera J, et al. A metabolic brain pattern associated with Anti-N-Methyl-D-Aspartate receptor encephalitis. Psychosomatics. 2020;61(1):39-48. DOI: 10.1016/j.psym.2019.08.007

Yuan J, Guan H, Zhou X, et al. Changing brain metabolism patterns in patients with ANMDARE serial 18F-FDG PET/CT findings. Clin Nucl Med. 2016;41(5):366-370. DOI: 10.1097/RLU.0000000000001164

González-Valcárcel J, Rosenfeld MR, Dalmau J. Differential diagnosis of encephalitis due to Anti-NMDA receptor antibodies. Neurologia. 2011;25(7):409-413. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3101880/

Kuppuswamy PS, Takala CR, Sola CL. Management of psychiatric symptoms in anti-NMDAR encephalitis: A case series, literature review and future directions. Gen Hosp Psychiatry. 2014;36(4):388-391. DOI: 10.1016/j.genhosppsych.2014.02.010

Warren N, O’Gorman C, McKeon G, Swayne A, Blum S, Siskind D. Psychiatric management of anti-NMDAR encephalitis: a cohort analysis. Psychol Med. 2021;51(3):435-440. DOI: 10.1017/S0033291719003283

Lejuste F, Thomas L, Picard G, et al. Neuroleptic intolerance in patients with anti-NMDAR encephalitis. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e280. DOI: 10.1212/NXI.0000000000000280

Yamanaka D, Kawano T, Tateiwa H, Iwata H, Locatelli FM, Yokoyama M. Successful management of dexmedetomidine for postoperative intensive care sedation in a patient with anti-NMDA receptor encephalitis: a case report and animal experiment. Springerplus. 2016;5(1):1380. DOI: 10.1186/s40064-016-3079-3

Warren N, Grote V, O’Gorman C, Siskind D. Electroconvulsive therapy for anti-N-methyl-D-aspartate (NMDA) receptor encephalitis: a systematic review of cases. Brain Stimul. 2019;12(2):329-334. DOI: 10.1016/j.brs.2018.11.016

Kayser MS, Titulaer MJ, Gresa-Arribas N, Dalmau J, et al. Frequency and characteristics of isolated psychiatric episodes in anti–N-methyl-d-aspartate receptor encephalitis. JAMA Neurol. 2013;70(9):1133-1139. DOI: 10.1001/jamaneurol.2013.3216

Broadley J, Seneviratne U, Beech P, Buzzard K, Butzkueven H, O’Brien T, et al. Prognosticating autoimmune encephalitis: a systematic review. J Autoimmun. 2019;96:24-34. DOI: 10.1016/j.jaut.2018.10.014

Titulaer MJ, McCracken L, Gabilondo I, Iizuka T, Kawachi I, Bataller L, et al. Late-onset anti-NMDA receptor encephalitis. Neurology. 2013;81(12):1058-1063. DOI: 10.1212/WNL.0b013e3182a4a49c

Finke C, Kopp UA, Prüss H, Dalmau J, Klaus-Peter W, Ploner CJ. Cognitive deficits following anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry. 2012;83(2):195-198. DOI: 10.1136/jnnp-2011-300411

Gibson LL, McKeever A, Coutinho E, Finke C, Pollak TA. Cognitive impact of neuronal antibodies: encephalitis and beyond. Transl Psychiatry. 2020;10(1):304. Disponible en: https://www.nature.com/articles/s41398-020-00989-x.pdf

Witt JA, Helmstaedter C. Neuropsychological evaluations in limbic encephalitis. Brain Sci. 2021;11(5):576. DOI: 10.3390/brainsci11050576

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2021 Revista Alergia México